

General Information

Queue number	Project name	
<i>AH1-545</i>	<i>Cornerstone Solar</i>	
Name of a signature authority from company	Title	
<i>Eric Crawford</i>	<i>Senior Vice President</i>	
Project Developer (former Interconnection Customer)	Federal Tax ID	
<i>North Corners Energy, LLC</i>	[REDACTED]	
Phone (day)	Phone (evening)	
[REDACTED]	[REDACTED]	
Email of a signature authority from company		
[REDACTED]		
Country		
<i>United States</i>		
Business address		
<i>520 Maryville Centre Drive Suite 400</i>		
City	State	Postal Code
<i>St. Louis, MO 63141</i>	<i>Missouri</i>	<i>63141</i>
Primary Contact Name	Title	
<i>Zelalem Tekle</i>	<i>Director, Transmission East</i>	
Phone (day)	Email	
[REDACTED]	[REDACTED]	

Invoice Contact Information

Invoice Contact Name	E-mail
<i>Zelalem Tekle</i>	[REDACTED]
Phone (day)	Phone (evening)
[REDACTED]	[REDACTED]

Facility Information

Facility location	
<i>GPS coordinates</i>	
Latitude	Longitude
<i>40.3356970</i>	<i>-80.5134610</i>

Is this a change in data to a previously submitted queue position or facility name?

No

Is this queue request claiming rights from a previous facility?

No

Planned in-service date

Point of Interconnection

POI state

Pennsylvania

POI county

Washington

Connection type

Single line tap / New substation

Substation A (from)

Wylie Ridge

Substation B (to)

Tidd

Distance from POI to Substation A

10.30 Miles

Distance from POI to Substation B

13.00 Miles

Line voltage

345.000000 kV

Project Capability

Type of request

Build new facility

Describe the facility and circumstances under which Surplus Interconnection Service will be available at the existing Point of Interconnection

This is a 200 MW MFO tracking Solar project. The proposed project will connect to Wylie Ridge-Tidd 345kV line via a new 345 kV interconnection switchyard. The project will consist of 58 - 4.2 MVA inverters. The inverters will be connected to a medium voltage collector system, which will feed into a 34.5/345 kV plant step-up transformer. The plant step-up transformer will connect to the gen tie which will lead to the POI at the new 345kV interconnection switchyard.

Generating Facility Capability

Maximum Facility Output (MFO) of the facility
as defined in section 1.18A.03 of the PJM Tariff
200.000000 MW

Capacity Interconnection Rights (CIRs)
20.000000 MW

	Summer	Winter
Net energy	200.000000	200.000000 MW
Gross energy output of facility	201.970000	201.970000 MW

Auxiliary Load

	Summer	Winter
Total auxiliary load of facility	0.190000	0.190000 MW
	0.062000	0.062000 MVAR

Where is the auxiliary load being connected?

High voltage side of the GSU

Station Load

Summer	Winter

Station load to support generation of electricity	0.020000	0.020000	MW
---	----------	----------	----

Load necessary to support facility of the plant (e.g. heating, lighting, air-conditioning, office equipment etc)

0.007000	0.007000	MVAR
----------	----------	------

Where is the station load being connected?

High voltage side of the GSU

Total Reactive Power Capability at Max Gross Energy Output

	Summer	Winter
Lagging - Overexcited	121.861900	121.861900 MVAR
Leading - Underexcited	-121.861900	-121.861900 MVAR

Additional comments related to the configuration above:

N/A

Fuel Supply Verification

Primary fuel type

Other

Behind The Meter

Purpose of application:

Not applicable

Supporting Documents

Single line diagram

[Cornerstone Solar CSLD 20250212.pdf](#)

Generator Information PV - Solar

Number of identical inverter(s)

58

Specify manufacturer

SMA

Specify model

SC4200-UP-US

MW value per inverter

3.522800 MW

MVA base

4.200000 MVA

Terminal voltage

0.630000 kV

Maximum fault current output from the inverter

*The maximum fault current present 2 to 3 cycles after a fault;
Typical range is 1.0 to 1.5 p.u.*

1.306000 P.U.

Requested CIRs

20.00

Voltage relay settings

SMA_SC4200_PQ_Curve

Frequency relay settings

SMA_SC4200_VRT_FRT_PRC-024-3

Stability Models

Please upload the document showing frequency and voltage relay [231109_Technical Information SC UP\(-US\)_V3.5.pdf](#) settings for the model

Please provide a reactive capability P/Q curve for the inverter [SC4200_Reactive Power Capability Curves 40C.pdf](#)

Dynamic Model Package

Prepared in accordance with the PJM Dynamic Model Development Guidelines

[AH1-545_Stability Models_Final_2-16-2025.zip](#)

Transformer Information

Cornerstone Solar Main Xfrm - Inverter Based Main Transformer

Selected Machine ID for Transformer

PV - Solar

MVA base	Number of identical transformers
133.000000 MVA	1

Cooling class designation(s) for your transformer

How many ratings does the transformer have?

Three ratings

Rating 1

ONAN
133.000000 MVA

Rating 2

ONAF
177.000000 MVA

Rating 3

OFAF
222.000000 MVA

Winding Type

Two Windings

Impedance on MVA base

	R	X	X/R
High-side to low-side	0.002440 P.U.	0.099970 P.U.	40.971311

	R0	X0	X/R
High-side to low-side	0.002070 P.U.	0.084970 P.U.	41.048309

Winding Nominal Voltages

High-side	Low-side
345.000000 kV	34.500000 kV

Winding Connection Types

High-side	Low-side
<i>Grounded Wye</i>	<i>Delta</i>

Tap position

17.000000

Number of taps

33

Step size

0.006300

Comments

As per FE standards, MPT has been updated to two-winding transformer with high-side grounded wye and low-side delta. Also, the inverter step-up will be high-side grounded wye and low-side delta

xfrm 1- 58 - Inverter Based Step-up Transformer

Selected Machine ID for Transformer

PV - Solar

MVA base	Number of identical transformers
4.200000 MVA	58

Cooling class designation(s) for your transformer

How many ratings does the transformer have?

One rating

Rating 1

ONAN
4.200000 MVA

Winding Type

Two Windings

Impedance on MVA base

	R	X	X/R
High-side to low-side	0.005430 P.U.	0.059750 P.U.	11.003683

	R0	X0	X/R
High-side to low-side	0.005430 P.U.	0.059750 P.U.	11.003683

Winding Nominal Voltages

High-side	Low-side
34.500000 kV	0.630000 kV

Winding Connection Types

High-side	Low-side
<i>Grounded Wye</i>	<i>Delta</i>

Tap position	Low-side
3.000000	<i>Delta</i>

Number of taps	Step size
5	0.025000

Comments

As per FE standards, MPT has been updated to two-winding transformer with high-side grounded wye and low-side delta. Also, the inverter step-up will be high-side grounded wye and low-side delta

Collector System Equivalent

Does the project have collector system equivalent data (modeled between main transformer and step-up transformers)?

Yes

Voltage level	MVA base
34.500000 kV	100.000000 MVA

Impedance on 100 MVA Base

R

X

Total branch positive sequence impedance	0.000240	0.000330	P.U.
--	----------	----------	------

Total branch zero sequence impedance	0.001370	0.000420	P.U.
--------------------------------------	----------	----------	------

B

Total branch charging susceptance	0.009010	P.U.
-----------------------------------	----------	------

Collector System Equivalent data

Attachment Line Data

Voltage level	MVA base
<i>345.000000 kV</i>	<i>100.000000 MVA</i>
Attachment line length	
<i>0.10 Miles</i>	

Impedance on 100 MVA Base

	R	X	
Total branch positive sequence impedance	<i>0.000010</i>	<i>0.000162</i>	<i>P.U.</i>
Total branch zero sequence impedance	<i>0.000103</i>	<i>0.000376</i>	<i>P.U.</i>
		B	
Total branch charging susceptance		<i>0.001638</i>	<i>P.U.</i>

Supporting Documents

Site plan

[AH1-545_Site_Plan.zip](#)

Completed Agreement (ASA, UASA, or SISSA)

[AH1-545_ASA.zip](#)

Officer Certification Form

[NorthCornersEnergyLLC_AH1_545_Solar_officer-certification-for-transition-readiness-site-control.pdf](#)

Other documents

[AH1-545_Cornerstone Solar_Deficiency_Notes.pdf](#)

Site Control Review Spreadsheet

[NorthCornersEnergyLLC_AH1_545_Solar_ApplicationReview_20241021.xlsx](#)

Identification of Ownership Interest

[AH1-545_Site_Control_Redacted.zip](#)

Supporting documents comments

Please see the attached deficiency notes

Deposits

Readiness Deposit One

[REDACTED]

Payment Type

[REDACTED]

Study Deposit

Wire Transfer Confirmation Number

[REDACTED]

Bank Account Name

[REDACTED]

Study Deposit Comments

[REDACTED]

Supporting Documents

Upload Executed Letter of Credit

[REDACTED]
